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Abstract

Based on the diffusion of oxygen, the oxidation on a plane metal-oxide interface is analyzed using a perturbation scheme. Unlike previ
models, the reaction rate and the oxygen dissolution into metal are taken into account. One-dimensional Landau transformation is applie
transform a moving domain by volumetric expansion during oxidation into a fixed domain. We investigate how the oxide thickness depends on
reaction rate, the ratio of diffusion coefficients, the molar density ratio, etc. By comparison of the results with the experimental observations,
compute the diffusion coefficients of oxygen in the metal and oxide, as well as the reaction rate coefficient for silicon and titanium oxidation.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

The oxidation of metals has been extensively studied since its important roles in modern teclibhejgyhe oxidation of
silicon is one of the critical steps in the fabrication of semiconductor devices to make a barrier to dopant diffusion into the substra
The application of metal matrix composites (MMC) has been increased and the life of them may be significantly reduced by t
oxidation at high temperatures.

For a class of oxidation such as silicon or titanium oxidation, oxygen diffuses through the oxide and reacts with the metal
the metal-oxide interface. Part of the oxygen diffusing the oxide dissolves into the[ihBiallhere occurs volumetric expansion
during the oxidation, because the density of the oxide is typically less than that of the metal. This volumetric expansion can
characterized by the Pilling—Bedworth raffgj, which is the molar density ratio of the metal to the oxide. Due to this volumetric
expansion, both the metal—oxide interface and the oxide—oxygen (air) interface move and thus the oxidation is thought as a non-lir
moving-boundary value problefh0,11]

A classical model on the oxidation has been proposed by Wdi@jhdt was assumed that diffusion through the oxide is the rate
determining step during the oxidation process, that no oxygen dissolves into metal, and that thermodynamic equilibrium is establis
at both the oxide—oxygen interface and the metal-oxide interface. Consequently, a parabolic rate of the oxide growth was obtail
Several authorf2—4] considered oxygen diffusion into the metal. The oxygen concentration was assumed to be linearly distribute
within the oxide, but this leads the solution to be valid only for a stationary inteff&jeWithout this assumption, Lagoudas et al.
[12] have calculated the oxygen concentrations in both the metal and the oxide. In their model, however, the volumetric expans
during oxidation was not taken into account.

In this paper, we will develop a solution by a perturbation analysis for the oxidation of a metal on a plane metal—-oxide interfax
without any limitations mentioned above. Once the moving boundaries by the oxidation are immobilized by the Landau transforn
tions[13], a regular perturbation technique is employed,15]. Here the perturbation parametgis the ratio of the molar density
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Nomenclature
CE?\)) concentration oft in phase B
Ceq equilibrium concentration of oxygen at the oxide—oxygen interface
DB diffusion coefficient of oxygen in phase B
reaction rate coefficient for the oxidation
N(oy) molar flux of oxygen in phase B

r(4) rate of production of species
u speed of displacement of the metal—oxide interface
V(a) velocity of A in phase B

Greek letters

ratio of the diffusion coefficient of oxygen in metal to that in oxide
Pilling—Bedworth ratio

perturbation parameter

unit normal to the phase interface

variable for new coordinate systems

X WS- R R

of oxygen at the oxide—oxygen interface to the molar density of the metal. We will first investigate how the oxide thickness depends
on the reaction rate, the ratio of diffusion coefficients, the molar density ratio, etc., and then determine the diffusion coefficients for
oxygen in the metal and oxide, and the reaction rate coefficient at the metal—-oxide interface for the oxidation of silicon and titanium.

2. Problem statement

As shown inFig. 1, a solid initially composed of pure metal is exposed to an oxygen environment. The following assumptions
will be made to model the oxidation of the metal.

(i) The frame of reference is chosen such that the oxide is stationary.
(i) The metal is initially oxygen-free.
(i) Equilibrium is established at the oxide—oxygen interface.
(iv) The molar density of metalmet) and the molar density of oxidgox) are independent of position and time.
(v) Temperature is independent of position and time, which means that the energy released by the reaction is dissipated rapidly
(vi) Oxygen diffuses through the oxide to react with the metal to form the oxide at the metal—-oxide interface. The oxidation is a
simple first-order reaction with respect to oxygen.
(vii) All physical parameters are considered to be constants.

3. Oxidation of metals

The growth of oxide on a planar surface is based on the diffusion of oxygen from air or oxygen environment to the metal surface,
where the oxidation of metal proceeds to form a fresh oxide.

0, > Oxide Metal

h(t) s(t)

Fig. 1. Schematic of the oxidation on a 1-D planar surface.
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The differential mass balancfks] for O, in an oxide and its metal layer are

) ©
Icioy) | Moy
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” 5% =0, O<z<h() (1)
(m) (m)
ac oN,
—02 L 7O _ o piy <z <) 2)
ot 0z

In what follows, superscripts (m) and (o) refer to the metal and the oxide layer, and subscripts refer to compepeats]
N(o,) are the concentration of oxygen and the molar flux of oxygen. The molar flux of speisekfined as

N(a) = cayv(a) 3)

in which v(o,) is thez component of velocity of oxygen.
Fick’s first law[16] of one-dimensional binary diffusion has a form

Neay = x(4)(N(a) + N(B)) — ¢ Dap)—— (A) (4)

wherex(a) is the mole fraction of componeAtandD(AB) is the diffusion coefficient od in B. Sincexa) = c(4)/c, Eq.(4) becomes

2
c(a) ¢ cA)\ _ ) de(a) c(4) 9c(p)
Nia) = N(p) — Dia N, D Diap —> —— 5
“ ¢ — c(a) (B) — C(aA) 4 )Bz ( c ) C(B) (B) = ZaB) 5 0z + P ) 02 ®)
From the definition of the molar fluf), this finally becomes
dc c(4) Oc
Ny = cayve) — Dap—— ( L 4 Dy EE (6)

C(B) 0z
In view of assumptions (i) and (iv), the molar flux of oxygen in both layers can be expressed as
(0)
ac
(0) _ _1y(0)_=(02)
Noy = D=

5e(m (7
(m) _ (m) (m) (Oz)
NG = €(G¥meny ~ D™ —5 =
From assumption (iv) and the differential mass balance for the metal, we have
(m)
)
Z¥(met)
=0 8
0z ®
Using Eqs(7) and (8) we can write Eqg(1) and (2)as
(0) 2 (0)
ac d“c
(©2) _ 0)” “(O2)
or =P 922 0<z<h() ®)
(m) (m) 2 (m)
dcig dcio 9%c o
2+ ey = D™ 8z( D () < z < s(0) (10)
in which the diffusion coefficients are considered to be constant by assumption (vii).
At each point on the metal—oxide interface, the jump mass balgh6ffr metal, oxide and @require
CEQ)et) (vgméo - ”) =T Em)et) (11)
CES&)“ =T Eé’i) (12)
(m) (. (m) (0 (,(0) (0)
¢(02) (”(02> - ”) ~¢(0y) (”(02) ) "02) (13)

Hereu is the speed of displacement of the metal-oxide interfacefgbdis the rate of production of specigsper unit area on the
phase interface.
In analyzing this problem the oxidation at the metal—oxide interface

ametal+ O, — boxide (14)
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is assumed to be a simple first-order reaction with respect to oxygen. Thus

(©) r(((,) ) _ rgg)) (0
o me! 0X ]
o) =, L, = ko (15)

wherek is a reaction rate coefficient for the oxidation. Recognizing this, we can elinﬂff(%et@among Eqgs(11){13)to obtain

by(N
wtemn: um VNG~ <°2)) (16)

Clmey T bY(c(@y) — (G

and
ateep: oM _(1_ @ (17)
<= : U(met) - b]/ u
Here we have introduced the Pilling—Bedworth ratio defined as
(m)

C
@9
C(ox)
From Egs(7), (16) and (17)we have
(m) (0)
dn ac oc
at;=h: u=_ = (f] - (D(m) o2 - D(O);OZ)> (19)
g C(met)e < <
and
(m) (0)
. om _br—a 30 0%
atz=h: VYmey= (D 2 D= (20)
(met)
where
(0) (m)
byc —ac
€(met) t=h
Using Eqs(8) and (20) we have
m (0]
m _ br— (m) (o) ©) 9c(Q))
V(met) = (m) o e (22)
€(mev€ z=h z=h
This allows Eq(10)to take the forms
(m) (m) (m) P2 (m)
dc by — 8c ac
(02) + (J:n) a ( (m) C(0p) (02) ) (O2) D(m) (02) h(t) <z< S(I) (23)
8[ C(met)e aZ —h aZ —h 8Z aZ
The initial condition is
atr=0: ¢{g)=0 (24)
from assumption (ii).
In view of assumption (iii), we also have
atz=0: CE%)Z) = Ceq (25)
Eqg.(12) becomes in view of Eqg$15) and (19)
elm) 5000
atz=h: DM 532) DO 3(‘;2) = kec(d), (26)

There exists a solubility limit, of oxygen in the metal, which is a function of temperatj#@,17,18] We will assume that the
solubility limit is quickly achieved at the metal—oxide interface during a high temperature oxidatjon

atz=nh: CEQZ) =y (27)
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Very far away from the metal—oxide interface, the concentration of oxygen is assumed to keep the initial state:

asz — s . C'Egg) —0 (28)

For simplicity, let us introduce the following dimensionless variables

(m (0) (0)
c(m)*zﬂ, C(O)*—@’ ¢ EtDi k,,:ksio Z*Ei, h*zﬁ, &=

S
Ceq Ceq 502’ D)’ 50 50 50

*

(29)

wheresg is the initial thickness of the metal. In term of these dimensionless variableFg&23)- (28) can be expressed by
8C(0)* 326(0)*

e O<zZ <h* (30)

19 (m)x by — 3 (m)x 19 (o) a3 (m)x 82 (m)x

o 8[ € c(met) BZ 7*=h* o BZ *=h* 82 82
and

atr =0: ™M =0 (32)

atz* =0: O =1 (33)

gcMk 50
atzr = a % precor (34)
0z* az*

atz* = h*: oMr = cs* (35)

atz* — s*: ™ 0 (36)
where

pm)
o= 0 (37)

For the oxide layer, Eq30)is to be solved consistent with Eq83) and (34)for the metal, Eq(31)is to be solved consistent
with Egs.(32), (35) and (36)
In order to determine the positidrt of the metal-oxide boundary as a function of time, we will sqi/@)

dn* by ¢ ac(m* ac(ox
&= e (“ oz T o ) 38)
C(met) Z Z'Zh* Z Z*:h*
consistent with the initial condition
atrr =0: h*=0 (39)

This problem can be simplified by introducing the Landau transform§ti®yi 5]

*

Z
X= I (40)
The Landau transformation was originally developed for describing the phase change of one-dimensional planar geometries
melting. It has been mainly applied to solve moving boundary prob[és:s22]
By using the chain rule
ac* 1 9oc*
azr  h* 0y
92c* 1 92c*
BZ*Z - h*2 aXZ
oc* oc* Iy  Oc*
o |~ axor
z

(41)

. X oc* n ac* ) dn*
. U h*ax onrf dr
to transform frome* (z*, *) to ¢*(x, #*), Egs.(30) and (31xan be written

by " 50O 5O (M
— - o
e o "oy ox

ac (o)yx

x=1 aX

32 (o)yx
=2 , O<yx<1 (42)
x=1 02
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and
(m) (m)« (M) (m)« (o) 2 (M)«
@h*&* _Xac +(1_a)ac }x aac e =8c2 Cley<s (43)
1073 oh ax by ax X ly=1 X |y=1 ax
The boundary conditions are now
ath* =0: ™ =0 (44)
aty=0: =1 (45)
geMr 50
aty=1: o — %L _prprecor (46)
ax ax
aty =1: M=+ (47)
aty — S = ;—* - M0 (48)
Here we have used E(38)in the form
dh* by ¢ dcmk acox (49)
= —_—— (04 —_
dr* € h* 3)( x=1 3)( =1
and we have introduced
C
9="m (50)

C(met)

It should be noticed thatis a function ofs*. This will be explained in Sectiof.2 Eqs.(42) and (43)re to be solved far(©*
andc(M* consistent with the boundary conditiot4)~(48) as functions ofi* and x. Finally (49) can be used to determirte
consistent with(39).

3.1. Perturbation analysis

In most practical casagq is much smaller tha%zﬂ), i.e. ¢ <« 1, which suggests that a regular perturbation analysis can be

applied for solving Eq942) and (43)using¢ as the perturbation parameter,

O (x, h*) = O, 1) + 600 h*) + G2 B + - (51)
™* (o, 1*) = SV 1) + (0 B + ¢3S (0 B + - (52)

These are substituted into E42) and (43)and the terms are ordered by the powerg.ofhe result is a sequence of systems
of equations for the zeroth-order solutiag for the first-order solutio; and for the second-order solutiof, etc. For a smalp,
the first-order perturbation solution is enough to describe the concentration of oxygen.

3.1.1. Zeroth-order perturbation
From Eqgs(43) and (52)the zeroth-order perturbation for the metal phase is

826E)m)
=0 53
o (53)
which should be solved consistent with the zeroth-order perturbati¢trptand (48)
aty=1: cgn) =cs" (54)
aty — S: c(()m) -0 (55)

The solution of(53) consistent with(54) and (55)s
m _ & (5=

56
o S_1 (56)
The zeroth-order perturbation for the oxide phase is obtained f@@and (51)
82 (0)
) =0 (57)

dx2
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Integrating this consistent with the zeroth-order perturbatio@dsf and (46)

aty=0: cg)) =1 (58)
(m) (0)
. aCO 8CO *7 %
aty=1: = —Wzkhecff) (59)
gives
© _q_ acs* + h*k*e(S — 1) 60
“ AT h ke (s — 1) (60)

Note that the zeroth-order solutiof&6) and (60yepresent the quasi-steady-state one which can be obtained frof3&gznd
(31) by discarding the time derivatives.

3.1.2. First-order perturbation
The first-order perturbation ¢#3)is

by | . 86(()m) 8cgm) a 8c§)m) 80(()m) 8080) 82c(lm)
— |k - X— 1-— o - — = — (61)
1073 oh* ax by ax ax 41 ax 41 9x2

The corresponding boundary conditions are the first-order perturbatigag)adind (48)
aty=1: d™=o0 (62)
aty=S: ™=0 (63)
Substituting Eqs(56) and (60)jnto Eg.(61) and integrating twice, we find

h*k*CS*(S - X)(X - 1)(1_ S+ acs*)
6ar(1 + h*k*€)(S — 1)3
The first-order perturbation of E42)is

My, %) =

X {(5—1) [3a + by(S — 2+ x)] +h*by(S—2+x);hS*} (64)

by N Bcgo) Bcgo) acg"’ Bcg)) 820(10)
—{h — X o — = (65)
€ oh* ax ax dx ax?
x=1 x=1

which is to be solved consistent with the first-order perturbation of @&g.and (46)
aty=0: =0 (66)
ac(lm) Bc(lo)

* 7 % (0)
— — =k*h 67
ax ax ! (67)

Eqgs.(65)—(67)are satisfied with

(O pry = A= S ey
1 6(1+ h*k*€)4(S — 1)2

+ oot ((1 KOS — 12 + a1+ 20 k)3 — 2 + h*k*e(1 — XZ)})]

n bycs*h*(1+ h*k*e)
Ss—-1

aty=1: «

{3{165*(1 F kXS — 1)+ by [h*zk*zez(s — DB 2+ kel — x2)

[(1 + h*k*€)2(S — 1) + af3 — x% + h*k*e(1 — XZ)}} ;i } (68)

3.2. Oxide thickness

In order to obtain the oxide thickness, E¢sl) and (52)are substituted into E¢49) and the terms are ordered by the powers of

¢:
d* b PR 500 PG 5c0)
_bre [ ,% S I D | _% +.. (69)
dr* € h* ox ox ax ax
x=1 x=1 x=1 x=1
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At this point, let us discuss on haty defined in Eq(48), depends on*. Since there is no oxidation in the metal phase including
at the boundary, the velocity of the boundaryis equal to the velocity of the metal in the metal phase in(Eg):

(m) (0)

% — b)(/ )_ a <D(m) BC(OZ) D(O) aC(OZ) ) (70)

m
dd . (et 0z — 0z i

From Eqgs(19) and (70)we have
& _,_a (71)
dh by
Thus
a
s = <1—>h—|—s0 (72)
by
With the help of Eqs(29) and (48), Eq. (72ecomes
a 1
S=(1—-— — 73
( by) G (73)
In view of Egs.(56), (60), (64), (68) and (73), Eq. (6Bgcomes

dr*  byk*(ah* — by + acs*h*by) zbyh*k*z(ah* — by + acs*h*by)
dr (1 + h*k*€)(ah* — by) 3(1+ h*k*e€)*(ah* — by)3

x {a " 2ah*by — b2y? — ah*? + ah* 2% — E*2*2ah* — by)(acs* + by)

+ ecs* h*k[4a?n* by — 2a3h*? + 2ab?yP(ah*? — 1) — ah*b3y3]} L. (74)

From this, we can obtain the oxide thickness with respect to time. In the limit of an instantaneous reaktion as and
cs* — 0, Eq.(74) reduces to

dn* _ byg by¢
= 1-— e 7
d*  h*e { 3e * (73)
Integrating this yields
2 2ordt {1_by¢+_..} (76)
€ 3e

3.2.1. k* Dependence on oxide thickness

In Fig. 2 the oxide thickness for five different valuesidfis plotted using Eq(;74). As an illustration, we have followed Lagoudas
etal.[12]inchoosingz = b =1, y = 1.766 ¢ = 0.133 ¢,* = 0.2925 and: ~ 1. We have also chosen= 0.1. At a small value of
k*, corresponding to the oxidation controlled by the rate of reaction, the oxide thickness linearly increases regardless of the oxidatio
time. Ask* increases, the growth rate of the oxide is transformed from linear to parabolic at early stage of oxidation. For a large
value ofk* describing the oxidation controlled by diffusion, the oxide growth can be represented by a fully parabolic function.

For titanium oxidation at high temperatures, a parabolic rate of oxidation has been observed by Kofsfad]etrad.by Unnam
et al.[3]. More recently, Imbrie and Lagoudfs] have studied the oxidation of titanium for solid cylindrical specimens, as well as
the oxidation of a plane. On the basis of their observations, the oxidation of titanium can be expected to be diffusion controlled.

0.2

0.15

h*
0.1

0.05

Fig. 2. Oxide thickness for five different valuesidfwherek* = kso/D.
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a=0.01

Fig. 3. Oxide thickness for five different valuesmfvherea = D™ DO,

3.2.2. «a Dependence on oxide thickness

Fig. 3 shows how the oxide thickness is affecteddbyThe same parameters are used as in the previous section except that
is now varied and we arbitrarily choog& = 100. As suggested in the previous section, we have chosen a relatively fast but not
instantaneous reaction. Some of the oxygen diffusing to the interface from the oxide is not reacted, but it diffuses into the me
As seen inFig. 3, a relatively large value af decreases the growth rate of oxide. In view of assumption (viy, iasreases, the
concentration in the oxide at the interface decreases, and the reaction rate decreases Mihé¢he rate of reaction becomes
controlled by the rate of diffusion of oxygen to the interface from the oxide.

3.2.3. y Dependence on oxide thickness

In Fig. 4, the oxide thickness for three different values of the Pilling—Bedworth yaiglotted using74). The same parameters
are used as in Secti@?2.1, again arbitrarily choosing® = 100. As expected frorfv4), the growth rate of oxide is highly increased
according toy increase.

3.2.4. ¢s* Dependence on oxide thickness

Unless the oxidation reaction is instantaneous, there occurs oxygen diffusion into the metal layer through the metal—oxi
interface. Each metal has its own solubility of oxyd@r17,18] For the titanium oxidation, a wide range of oxygen solubility from
7 to 34 at.% has been reportg4,6—8,24] It has been also observed thgt varies with the exposure time and tempera{Gé].
Now the effect ofc,* on the oxide thickness is shown kig. 5. As expected, a lowes;* gives rise to thicker oxide because a
relatively large amount of oxygen involves in the oxidation reaction.

4. Comparing with experimental data

By comparing the oxide thickness and the concentration of oxygen predicted by our perturbation analysis with experimental dz
we compute the diffusion coefficients of oxygen, as well as the reaction rate coefficient for the oxidation.

4.1. Silicon oxidation

For silicon oxidation, there occurs no oxygen diffusion into the silicon substrate. The Pilling—Bedworth im2015[5] and
¢ is generally of the order of I® [15]. Fig. 6 compares the data of Lie et &5] for the growth of SiQ layer at five different

Fig. 4. Oxide thickness for three different values.of
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0.2

Fig. 5. Oxide thickness for four different values@f wherec,* = c;/ceq.

1000 °C
1
=oc ]
0.8 950 }/
0.6 o
h (um) 900 °C
04 850 °C
0.2 800 °C
2 4 6 8

t (hr)

Fig. 6. Experimental data for the thickngsgum) of SiO, layer at 203 x 10° Pa and each temperature as a function of tirfig. These are fitted to the thickness
calculated by(74)to estimate the values éfandD o, sio,).

temperatures with the oxide thickness predicte{ify. In this calculation we have used the same values of equilibrium concentration
ceqas Peng et a[26] used.

As seen irFig. 6, the perturbation analysis gives a very good representation of the experimental dataleldthe values ok
andD(o,,sio,) used in plotting=ig. 6are listed.

Using a least-square fit to the data summarizetaible 1 we find

Ek
k= 9.69x 10° exp (— R;) (77)

and

ED
D(0,,si0) = 2.73 % 1073 exp (— RaT> (78)

whereEX = 41.8 kcal/mol andE? = 52.1 kcal/mole, respectively. Under the assumption of instantaneous redctioro at the
Si—-SiQ interface, Peng et g26] has obtained
54.8 kcal/mo!>

RT (79)

D(0,.si0,) = 5.05x 107% exp<

4.2. Titanium oxidation

As mentioned in SectioB.2.4 oxygen can diffuse into titanium through the Ti—pidterface. Recently, Imbrie and Lagoudas
[6] studied the oxidation of a flat titanium surface at 7G0measuring both the oxide thickness as a function of tirm (7) and the

Table 1
Estimated values df andD(o, sio,) at five different temperatures

800°C 850°C 900°C 950°C 1000°C
k (m/s) 0.03 0.07 0.15 0.38 0.60

D(0,,510) (LMP/S) 0.06 0.2 0.6 1.4 2.7
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30
25
-”")
20 e il
h(pm) 15
10
—— Perturbation
5 ¢ Experiment
50 100 150 200 250

t (hr)

Fig. 7. The thickness of TiO; as a function of time measured by Imbrie and Lagoudé$. The curve is fron(74).

(m) — Perturbation
U/‘ )
Cl()ﬁ (at.%8) Experiment

z - h(um)

Fig. 8. Concentration of oxygen in the mear%g) as a function of— at 240 h as measured by Imbrie and LagoyéhsThe curve is fron{52) using(56) and (64)

oxygen concentration in the metal phase at 248i¢.@). Our objective here is to determine the corresponding diffusion coefficients
in the metal and oxide as well as the reaction rate coefficient.

From Imbrie and Lagoudd$], we have the oxygen concentration at the metal—oxide interface is 25 at.%. We also know tha
Ti(O) varies linearly from 4.52 to 5.04 g/chas the oxygen concentration varies from 0 to 34 §2%. This allows us to compute
¢s = 15.3 kmol/m?. Imbrie and Lagoudai§] also measureteq = 17.7 kmol/m?, y = 1.779 andsg = 100um. We have used that
c(Tiy = 94.4 kmol/m? [28].

We will compare(74) with the experimental measurements:ads a function of as shown irFig. 7. We also wish to compare
(52) using (56) and (64)with the experimental measurement«:ég'g) of z—h in Fig. 8 In these comparisons, there are three
unknown parameterse*, «, and Do, Tio,). These parameters were determined by a least-squares(fidptind (52)to these
two experimental curvesk* = 20, D(o, Tio,) = 1.32 x 103 um?/s ande = 0.12, i.e.,D(o, 1i) = 1.58 x 10~* pm?/s. Under the
assumption that oxygen concentration was assumed to be linearly distributed within the oxide, Unni@nadttainedD o, Tio,) =
2.91x 1072 pm?/s, andD(o, Ti) = 5.76 x 10~4 um?/s. While Entchev et a[28] have reporte® (o, Tio,) = 1.34 x 1073 um?/s,
which was calculated by using the assumptions that the oxidation reaction is instantaneous at theifieffé@e, and that there
occurs no oxygen diffusion into titanium.

5. Conclusions

For the oxidation of a metal with oxygen diffusion through the oxide and metal, we have employed a perturbation analysis, whe
the perturbation parametgis the ratio of the molar density of oxygen in the oxide at the oxide—oxygen interface to the molar density
of metal. We have avoided the assumptions made in previous gap&i312,28] such as the oxygen concentration being linearly
distributed in the oxide, no volumetric expansion during the oxidation, or instantaneous reaction at the metal-oxide interface.

We have found an expression for the oxide growth rate and the oxygen concentration in the metal and oxide in which the react
rate as well as the volume expansion are taken into account. The results were fit to the experimental data by25kaidimbrie
and Lagoudafs], in order to determine the diffusion coefficients in the metal and in the oxide, as well as the reaction rate coefficiel
at the metal-oxide interface.

It has been shown that, when the oxidation is reaction-controlled, the oxide grows linearly and that, as the reaction rate increa
the oxide grows more parabolically. A fully parabolic growth rate indicates that the oxidation is diffusion-controlled. This forms al
easy test by which one can decide whether the oxidation is reaction-controlled or diffusion-controlled.
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The approach developed here is not limited to the oxidation of either silicon or titanium, but it may be extended to the oxidation
of any metal where the oxidation reaction involves &d occurs at the metal—oxide interface. It is only necessary to properly
recognize the stoichiometry of the oxidation reactjb4).
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